关于2016高三最容易出错的函数与导数易错考点
导语:学习要有三心,一信心,二决心,三恒心。下面是小编为大家整理的,数学知识点。希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!
1函数与导数知识点1.函数的定义域与值域都是非空数集.求函数相关问题易忽略“定义域优先”原则或求错函数的定义域.如求f(x)=ln(x2-3x+2)的单调区间,只考虑t=x2-3x+2与函数y=ln t的单调性,忽视t>0的限制条件;求函数f(x)=的定义域时,只考虑到x>0,x≠0,而忽视ln x≠0的限制.
2.考生应注意函数奇偶性的定义,易忽视函数定义域关于坐标原点对称的限制条件;求函数的单调区间,易盲目在多个单调区间之间添加符号“∪”.
3.不能准确理解基本初等函数的定义和性质.如函数y=ax(a>0,a≠1)的单调性忽视字母a的取值讨论,忽视ax>0;对数函数y=logax(a>0,a≠1)忽视真数与底数的限制条件.
4.考生易混淆函数的零点和函数图象与x轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.
5.不能准确记忆基本初等函数的图象,不能准确利用函数图象平移、伸缩变换得到所需函数的图象,如画出函数f(x)=lg(1-x)的图象时,不能通过对y=lg x的图象正确进行变换得 ……此处隐藏2824个字……
8.f′(x0)是曲线y=f(x)在点P(x0,y0)处的切线斜率,相应的切线方程是y-y0=f′(x0)(x-x0). ( )
9.f′(x)≥0是可导函数f(x)在x∈(a,b)内是增函数的充要条件;f′(x0)=0是可导函数在x=x0处取得极值的必要条件. ( )
10.判断极值时,需检验f′(x)在方程f′(x)=0的根的左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y=f(x)在这个根处取得极大值;如果在根的左侧附近为负,右侧附近为正,那么函数y=f(x)在这个根处取得极小值. ( )
名师点拨
1.× 2.√ 3.√ 4.√ 5.√ 6.√ 7.× 8.√ 9.× 10.√
第1题不符合函数定义;第7题不满足零点存在定理的条件;第9题错误理解函数单调性与导数的关系.
订正1 函数y=f(x)的图象与直线x=a(a∈R)的交点可能是0个或1个,即最多有一个交点.
订正7 函数零点的存在性:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0.如果函数y=f(x)在区间(a,b)内单调,则函数y=f(x)在区间(a,b)内有唯一的零点.
订正9 可导函数f(x)在区间(a,b)上为增函数的充要条件是:对于任意x∈(a,b),有f′(x)≥0,且f′(x)在区间(a,b)的任意子区间上都不恒为零