数列数学教案设计

时间:2023-07-06 13:44:39
数列数学教案设计

数列数学教案设计

教学目标: 理解数列的概念、表示、分类、通项等基本概念,了解数列和函数之间的关系,了解数列的 通项公式,并会用通项公式写出数列的任意一项,对于比较简单的数列,会根据其前几项写出它 的一个通项公式;培养学生认真观察的习惯,培养学生从特殊到一般的归纳能力 教学重点: 1.理解数列概念; 2.用通项公式写出数列的任意一项. 教学难点: 根据一些数列的前几项抽象、归纳出数列的通项公式. ,提高观察、抽象的能力 一、基本概念 数列:按照一定顺序排列着的一列数.

数列的项、数列的项数 表示数列的第n项与序号n之间的关系的公式 通项公式:不是所有的数列都有通项公式 n n +1 、( 1) 符号控制器:如( 1) 递推公式:表示任一项与它的前一项(或前几项)间的关系的公式.

有穷数列:项数有限的数列. 无穷数列:项数无限的数列. 递增数列:从第2项起,每一项都不小于它的前一项的数列. 数列分类 递减数列:从第2项起,每一项都不大于它的前一项的数列. 常数列:各项相等的数列. 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.二、等差数列:从第 2 项起,每一项与它的前一项的差等于同一个常数,这个常数称为等差数列 的公差.

an an 1 d , n 2且n Z ,或 an 1 an d , n 1且n Z an a1 n 1 d am n m d kn b a a1 an am 1、若等 ……此处隐藏528个字……三章数列有关知识,首先我们 看一些例子. 1,2,3,4,…,50 1,2,22,23,…,263 ① ②

15,5,16,16,28 0,10,20,30,…,1000 1,0.84,0.842,0.843,…

③ ④ ⑤

请同学们观察上述例子,看它们有何共同特点? 它们均是一列数,它们是有一定次序的. 引出数列及有关定义. 1.定义 (1)数列:按照一定次序排成的'一列数. 看来上述例子就为我们所学数列.那么一些数为何将其按照一定的次序排列,它有何实际意 义呢?也就是说和我们生活有何关系呢? 如数列①,它就是我们班学生的学号由小到大排成的一列数. 数列②,是引言问题中各个格子里的麦粒数按放置的先后排成的一列数. 数列③,好像是我国体育健儿在五次奥运会中所获金牌数排成的一列数. 数列④,可看作是在 1 km 长的路段上,从起点开始,每隔 10 m 种植一棵树,由近及远各 棵树与起点的距离排成的一列数. 数列⑤,我们在化学课上学过一种放射性物质,它不断地变化为其他物质,每经过 1 年,它 就只剩留原来的 84%, 若设这种物质最初的质量为 1, 则这种物质各年开始时的剩留量排成一列 数,则为:1,0.84,0.842,0.843,…. 诸如此类,还有很多,举不胜举,我们学习它,掌握它,也是为了使我们的生活更美好,下 面我们进一步讨论,好吗? 现在,就上述例子,我们来看一下数列的基本知识. 比如,数列中的每一个数,我们以后把其称为数列的项,各项依次叫做数列的第 1 项(或首 项),第 2 项,…,第 n 项,…. 那么,数列一般可表示为 a1,a2,a3,…,an,….其中数列的第 n 项用 an 来表示. 数列还可简记作{an}.

《数列数学教案设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式